Муниципальная бюджетная общеобразовательная организация Русскоюрткульская средняя школа имени кавалера ордена Отечественной войны I и II степени Андрея Ивановича Новикова муниципального образования «Старомайнский район» Ульяновской области

Рассмотрено и принята на заседании	УТВЕРЖДЕНС
педагогического совета	приказом директора
Протокол № 7_	МБОО Русскоюрткульская СШ
от « 19 »07 2024 г.	им. А.И. Новикова
	№ 191 от «_19_»_07_ 2024 г
	Директор Н.В. Гафурова

Дополнительная общеобразовательная общеразвивающая программа технической направленности «Основы робототехники»

(Стартовый уровень)

Возраст учащихся: 12-15 лет

Срок реализации: 1 год

Программу составила педагог дополнительного образования:

Валиулина Лэйсэн Феткулисламовна

Информационная карта дополнительной общеобразовательной общеразвивающей программы «Основы робототехники»

1	Название программы	«Основы робототехники»
2	Год разработки программы	2024 год
3	Тип программы	Модифицированная
4	Вид программы	Дополнительная общеобразовательная общеразвивающая
5	Направленность программы	Техническая
6	Возрастной уровень реализации программы	12-15 лет
6	Уровень освоения содержания образования	Стартовый
7	Форма реализации программы	Групповая
8	Срок реализации программы	С 02.09.2024 по 23.05.2025 год
9	Ф.И.О. автора	Валиулина Лэйсэн Феткулисламовна
10	Дислокация т/о	МБОО Русскоюрткульская СШ им. А.И. Новикова

Содержание

1.Комплекс основных характеристик программы

1.1. Пояснительная записка	3			
1.2. Содержание программы				
2. Комплекс организационно-педагогических усло	рвий			
2.1. Календарный учебный график	14			
2.2. Условия реализации программы	17			
2.3. Формы аттестации и оценочные	18			
материалы				
2.4. Методические материалы	19			
2.5.Список литературы	20			

1. Комплекс основных характеристик программы

1.1 Пояснительная записка

Человечество вошло в 21 век с тенденцией стремительного роста доли сложных наукоемких производств, требующих все более интеллектуальных автоматизированных объектов управления. Контроллеры, различные микропроцессорные регуляторы, системы поиска и GPS все сильнее входят в жизнь среднего человека планеты.

Данная программа нацелена на формирование навыков применения средств робототехники и технологий автоматизации в повседневной жизни, в учебной/проектной деятельности, при дальнейшем освоении профессий, востребованных на рынке труда.

Основное назначение программы состоит в выполнении социального заказа современного общества, направленного на подготовку подрастающего поколения к полноценной работе в условиях глобальной информатизации всех сторон общественной жизни.

Нормативно-правовое обеспечение программы

В настоящее время содержание, роль, назначение и условия реализации программ дополнительного образования закреплены в следующих нормативных документах:

- Федеральный закон от 29 декабря 2012 года № 273-ФЗ «Об образовании в Российской Федерации» (ст. 2, ст. 15, ст.16, ст.17, ст.75, ст. 79);
- Концепция развития дополнительного образования детей до 2030 года;
- Приказ Минпросвещения РФ от 27.07.2022 года № 629 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- Методические рекомендации по проектированию дополнительных общеразвивающих программ № 09-3242 от 18.11.2015 года;
- СП 2.4.3648-20 Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи;
- «Методические рекомендации от 20 марта 2020 г. по реализации образовательных программ начального общего, основного общего, среднего общего образования, образовательных программ среднего профессионального образования и дополнительных общеобразовательных программ с применением электронного обучения и дистанционных образовательных технологий»;
- Устава и локальных актов МБОО Русскоюрткульская СШ им. А. И. Новикова.

Направленность образовательной программы

Уровень освоения программы: стартовый

Актуальность программы обусловлена тем, что в настоящее время одной из задач современного образования является содействие воспитанию нового поколения, отвечающего по своему уровню развития и образу жизни условиям общества будущего, в котором важное место займут робототехника и автоматизация машинных процессов. Для этого обучающимся предлагается осваивать навыки конструирования робототехнических систем, осваивать методы их программирования, отладки и внедрения в технологический процесс.

Педагогическая целесообразность заключается в предоставлении школьнику спектра возможностей по реализации его интересов и способностей в робототехнике, создания самостоятельных творческих работ, формировании информационной культуры, обеспечении интегрированного подхода в изучении традиционных учебных предметов, формировании мотивации детей и подростков к изучению и использованию принципов робототехники с последующим выбором профессии.

Реализация программы позволяет школьникам:

- ориентироваться в меняющихся жизненных ситуациях, самостоятельно приобретая необходимые знания, применяя их на практике;
- самостоятельно критически мыслить, видеть возникающие проблемы и искать пути рационального их решения, используя современные технологии, четко осознавать, где и каким образом могут быть применены их знания, быть способными генерировать новые идеи, творчески мыслить;
- быть коммуникабельными, контактными в различных социальных группах при выполнении проектов, уметь работать сообща в различных областях, в различных ситуациях, выходя из любых конфликтных ситуаций;
- самостоятельно работать над развитием собственных нравственных ценностей, интеллекта, культурного уровня.

Дополнительность программы по отношению к программам общего образования заключается в её ориентированности на изучение и привлечение обучающихся к практическому применению знаний полученных школе и на занятиях по робототехнике при помощи конструирования, программирования и использования роботизированных устройств.

Адресат программы

Программа предназначена для среднего школьного возраста: 12-15 лет.

Становление детей среднего возраста выражается осознанным отношением к окружающему миру. Интенсивность накопления личного опыта по взаимодействию со средой приводит к формированию прочной нагляднообразной картины окружающего мира, определяющий процесс развития личности в дальнейшем.

Характеристика возрастной группы:

В возрасте 12-15 лет у ребёнка происходит активное формирование собственной точки зрения, мировоззрения. Он вполне чётко может высказывать собственное мнение по многим вопросам. У детей этого возраста ярко выражена потребность в общении и дружбе, им уже меньше хочется проводить время с родителями. Тем не менее, похвала и одобрение взрослых очень важны. Причём обучающемуся ценно, чтобы говорили именно о нём, делали акцент на его личных особенностях и хвалили за дело. Так же важно в этот период сформировать у ребёнка

увлечение к полезному и созидательному труду помочь найти хобби, которое и может быть занятиями по робототехнике.

В связи с этим основная форма проведения занятий — это практические работы, в ходе которых у детей появляется возможность продемонстрировать свои индивидуальные и коллективные решения поставленных задач.

Объём программы:

36 часов.

Срок освоения программы: 1 год.

Режим занятий:

периодичность - 1 раз в две недели;

продолжительность одного занятия 2 часа (очно) – 45 мин. занятие / 10 мин. Перерыв (очно) – 45 мин. занятие / 10 мин. перерыв (дистанционно) – 30 мин. занятие / 10 мин. Перерыв (дистанционно) – 30

мин. занятие / 10 мин. перерыв

Формы обучения и особенности организации образовательного процесса

Базовая форма обучения данной программы – *очная*, но в случаях невозможности проведения занятий в очном режиме доступно

осуществление некоторого числа *дистанционных* занятий с использованием электронно- коммуникационных технологий, в том числе сети Интернет.

Концепция обучения, по данной дополнительной общеразвивающей программе, построена следующим образом:

- педагог знакомит детей с историей возникновения и становления робототехники, а также применением робототехнических систем в окружающем нас мире;
- в течение учебного периода педагог организует небольшие внутрикружковые соревнования и конкурсы, направленные на повышение интереса к данному предмету и техническим наукам в целом, а также участвует вместе с детьми в региональных мероприятиях технической направленности;
- в проведении занятий рекомендуется использовать наглядные материалы: фотографии, презентации, видеофильмы;
- занятие следует выстраивать таким образом, чтобы ребёнок в ходе урока делал для себя небольшое открытие, узнавал что-то новое, самостоятельно экспериментировал;
- педагог обязан следить за обеспечением безопасности труда обучающихся при выполнении практических заданий и экспериментов, в том числе по соблюдению правил электробезопасности.

Программа предусматривает использование следующих форм работы: фронтальной - подача материала всему коллективу воспитанников; индивидуальной - самостоятельная работа обучающихся с оказанием педагогом помощи обучающимся при возникновении затруднения, не уменьшая активности обучающегося и содействуя выработки навыков самостоятельной работы;

групповой обучающимся когда предоставляется возможность самостоятельно построить свою деятельность на основе принципа взаимозаменяемости, ощутить помощь со стороны друг друга, учесть возможности каждого на конкретном этапе деятельности. способствует более быстрому и качественному выполнению заданий. Особым приёмом при организации групповой формы работы является ориентирование детей на создание так называемых минигрупп или подгрупп с учётом их возраста и опыта работы.

В соответствии с концепцией образовательной программы формирование групп обучающихся происходит по возрастному ограничению - состав группы постоянный.

1.2 Цель и задачи образовательной программы

У Цель программы: обучение основам конструирования и программирования

Задачи

Обучающие:

- Познакомить с увлекательным миром робототехники.
- Помочь овладеть навыками и приемами конструирования.
- Научить основам алгоритмизации и программирования.
- Научить применять робототехнику для решения реальных проблем и задач.
- Привить обучающимся технический образ мышления.

Развивающие:

- Развивать познавательные способности обучающегося, память, внимание, пространственное мышление, эстетическое мировоззрение.
- Сформировать у обучающихся навыки творческого подхода к поставленной задаче, командной работе и публичных выступлений.
- Развивать логическое и алгоритмическое мышление.

Воспитательные:

- Воспитывать усидчивость, умение преодолевать трудности.
- Сформировать информационную культуру.
- Сформировать потребность в дополнительной информации.
- Сформировать коммуникативные умения.
- Развивать мотивацию личности к познанию.
- Сформировать нравственные качества личности и культуру поведения в обществе.

1.3 Планируемые результаты освоения программы

Личностные результаты

- ✓ Способность ориентироваться в большом разнообразии технических средств;
- ✓ развитие любознательности, сообразительности при выполнении разнообразных заданий проблемного и эвристического характера;
- ✓ развитие внимательности, настойчивости, целеустремленности, умения;
- ✓ преодолевать трудности качеств, весьма важных в проектной деятельности;
- ✓ развитие самостоятельности суждений, независимости и нестандартности мышления;
- ✓ воспитание чувства справедливости, ответственности;

- ✓ начало профессионального самоопределения, ознакомление с миром профессий, связанных с робототехникой.
 - Метапредметные результаты
- Метапредметные результаты направлены на формирование регулятивных, познавательных и коммуникативных учебных действий.

Регулятивные универсальные учебные действия проявляются в способности:

- ✓ принимать и сохранять учебную задачу;
- ✓ планировать последовательность шагов алгоритма для достижения цели;
- ✓ формировать умение ставить цель создание творческой работы, планировать достижение этой цели;
- ✓ осуществлять итоговый контроль по результату;
- ✓ адекватно воспринимать оценку своей деятельности;
- ✓ различать способ и результат действия;
- ✓ вносить коррективы в действия в случае расхождения результата;
- ✓ решения задачи на основе ее оценки и учета характера сделанных ошибок;
- ✓ проявлять познавательную инициативу в проектном сотрудничестве;
- ✓ оценивать получающийся проектный продукт и соотносить его с изначальным замыслом, выполнять по необходимости коррекции либо продукта, либо замысла.

Сформированность познавательных универсальных учебных действий проявляется в умениях:

- ✓ осуществлять поиск информации в информационной среде;
- ✓ использовать средства информационных и коммуникационных технологий для решения коммуникативных, познавательных и творческих задач;
- ✓ ориентироваться на разнообразие способов решения задач;
- ✓ строить логические рассуждения в форме связи простых суждений об объекте;
- ✓ устанавливать аналогии, причинно-следственные связи Критерием формирования коммуникативных универсальных учебных действий являются умения:
 - ✓ аргументировать свою точку зрения; признавать возможность существования различных точек зрения и права каждого иметь свою;
 - ✓ планировать учебное сотрудничество с наставником и сверстниками определять цели, функции участников, способы взаимодействия;
 - ✓ осуществлять инициативное сотрудничество в создании технической модели;
 - ✓ разрешать конфликты выявление, идентификация проблемы, поиск и

оценка

- альтернативных способов разрешения конфликта, принятие решения и его реализация;
- ✓ с достаточной полнотой и точностью выражать свои мысли в соответствии с задачами и условиями коммуникации;
- ✓ использовать монологическую и диалогическую формы речи.

Предметные результаты:

В процессе освоения программы, обучающиеся приобретут знания об устройстве различных плат Arduino и их аналогов. Изучат устройство, принципы работы и варианты применения датчиков приводных механизмов. Научатся программировать своих роботов решать поставленные задачи автоматизации. В ходе занятий обучающиеся будут вовлечены в проектную деятельность, которая позволит им в малых группах разрабатывать и представлять проекты, научатся обосновывать свою точку зрения и решать исследовательские задачи.

1.4. Содержание программы

Учебный план

N₂		К	оличество ч	асов	Форма
п/п	Название темы	всего	практика	теория	аттестации/ контроля
1	2	3	4	5	6
1	Вводные основы констру-	4	1	3	
	ирования				
1.1	Вводное занятие.	1	0,5	0,5	Входное
	Техника безопасности.				тестирование
	Знакомство с технической	1	0,5	0,5	
1.2	деятельностью человека.				Устный опрос
1.2	Информатика, кибернетика,				э стивии опрос
	робототехника.				
	Понятие робототехники, как	1	0,5	0,5	
1.3	науки, история ее развития.				Устный опрос
	пауки, история ес развития.				
	Смотр презентаций	1	0,5	0,5	Самостоятель
1.4	учащихся на тему				ная работа.
	робототехники.				пал раоота.
2	Изучение состава	13	10	3	
	конструктора КЛИК				
2.1	Изучение принципов	2	1	1	Практическое
	построения гоночных				задание
	машин с использованием				
	электрических машин.				
2.2	Составление	2	1	1	Практическое
	принципиальной схемы.				задание

2.3	Сборка каркаса робота. Закрепление основных деталей.	2	2		Практическое задание
2.4	Создание управляющей программы. Настройка драйвера управления двигателями. Работа с энкодером.	2	2		Практическое задание
2.5	Синтез алгоритма прохождения препятствий.	2	1	1	Практическое задание
2.6	Отладка написанной программы и доработка.	2	2		Практическое задание
2.7	Подготовка к публичному выступлению для защиты результатов. Демонстрация результатов работы	1	1		Тестирование
3	Робот-манипулятор	17	12	5	
3.1	Изучение принципов построения современных манипуляторов. Формирование программы работ.	2		2	Устный опрос
3.2	Составление Принципиальной схемы	2	2		Практическое задание
3.3	Сборка каркаса робота. Закрепление основных деталей.	2	2		Практическое задание
3.4	Создание управляющей программы. Изучение работы сервоприводов.	2	1	1	Практическое задание
3.5	Создание управляющей программы. Освоение ПО TrackingCamApp для работы с камерой технического зрения. Наладка камеры технического зрения.	2	1	1	Практическое задание
3.6	Создание управляющей программы. Создание программного кода для Сопряжения камеры технического зрения и манипулятора.	2	2		Практическое задание
3.7	Создание управляющей программы движения манипулятора.	2	1	1	Практическое задание
3.8	Отладка написанной программы и доработка.	2	2		Практическое задание

3.9	Подготовка к публичному	1	1		Тестирование
	выступлению для защиты				
	результатов. Демонстрация				
	результатов работы				
	Итого	34	20	14	

Содержание учебно-тематического плана

I. Вводные основы конструирования (4 часа / 4 занятия).

1.1. Вводное (организационное) занятие. Техника безопасности

(1час / 1 занятие).

Теория. Инструктаж по технике безопасности. Знакомство с правилами поведения в кабинете, на занятиях.

Практическая работа. Подготовка рабочего места, личного ПК, конструктора к учебному сезону.

Знакомство с технической деятельностью человека (1 час / 1 занятие).

Теория. Беседа о техническом конструировании и моделировании как о технической деятельности. Общие элементарные сведения о технологическом процессе, рабочих операциях. Просмотр фильмов, журналов и фотографий, где учащиеся смогут познакомиться с технической деятельности человека.

Практическая работа. Проведение входной диагностики.

Форма контроля. Решение тестов и задач на знание основ геометрии, физики, информатики.

1.3. Понятие робототехники, как науки, история ее развития (1 час / 1 занятие).

Теория. Беседа о робототехнике, истории ее развития. Знакомство с деталями конструктора КЛИК.

Практическая работа. Сборка первого робота.

Форма контроля Вопросы по изученному материалу.

1.4. Самостоятельная работа

(1 час / 1 занятие).

Теория. Просмотр презентаций учащихся на тему робототехники.

Практическая работа. Показ презентации на выбранную тему, связанную с робототехникой.

Форма контроля. Вопросы по темам презентаций.

II. <u>Изучение состава конструктора КЛИ</u>К (13 часов/13 занятий)

2.1. Изучение принципов построения использованием электрических машин (2 часа/2 занятия)

гоночных машин

C

Теория Постановка проблемы, генерация путей решения. Изучаются различные варианты схем гоночных машин. Подбирается максимально функциональная согласно имеющимся возможностям.

Практическая работа. Гонки автомобилей

Форма контроля Практическое задание.

2.2. Составление принципиальной схемы. (2 часа/2 занятия)

Теория Описание основных принципов построения принципиальных схем. Знакомство с основными типами УГО (условно-графических элементов).

Практическая работа. Синтез принципиальной схемы конкретного электрического устройства.

Форма контроля. Практическое задание.

2.3. Сборка каркаса робота. Закрепление основных деталей. (2 часа/2 занятия)

Практическая работа. Сборка каркаса машины из текстолита. Закрепление основного оборудования: электрических двигателей, драйверов управления двигателями, отладочной платы, держателя батареек, макетных плат, энкодеров, датчиков.

Форма контроля. Практическое задание

2.4. Создание управляющей программы. (2 часа/2 занятия)

Практическая работа. Поиск библиотек и создание на их основе алгоритмов для работы описываемых узлов.

Форма контроля Практическое задание

2.5. Синтез алгоритма прохождения препятствий. (2 часа/2 занятия)

Теория Разбор различных видов препятствий. Разбор различных подходов к их прохождению.

Практическая работа. Реализация различных алгоритмов, для прохождения различных препятствий

Форма контроля Практическое задание

2.6. Отладка написанной программы и доработка. (2 часа/2 занятия)

Практическая работа. Отладка и доработка написанной программы.

Форма контроля Практическое задание

2.7. Подготовка к публичному выступлению для защиты результатов. Демонстрация результатов работы

(1 час/1 занятие)

Практическая работа. Подготовка презентации для защиты. Подготовка речи для защиты. Презентация созданной программы.

Форма контроля тестирование.

III. Робот-манипулятор (17 часов/17 занятий)

3.1. Изучение принципов построения современных манипуляторов. (2 часа/2 занятия)

Теория. Знакомство с кейсом, постановка проблемы, генерация путей решения. Изучаются принципы работы манипуляторов.

Форма контроля

3.2. Составление принципиальной схемы (2 часа/2 занятия)

Практическая работа Описание основных принципов построения принципиальных схем. Знакомство с основными типами условнографических элементов. Синтез принципиальной схемы конкретного электрического устройства.

Форма контроля Практическое задание.

3.3. Сборка каркаса робота. (2 часа/2 занятия)

Практическая работа Сборка каркаса манипулятора из имеющихся деталей конструктора. Закрепление основного оборудования: сервоприводов, отладочной платы, держателя батареек, макетных плат, камеры технического зрения.

Форма контроля Практическое задание.

3.4. Создание управляющей программы. Изучение работы сервоприводов. (2 часа/2 занятия)

Теория. Изучение принципов функционирования. Особенности подачикоманд и объединения в сеть.

Практическая работа Поиск библиотек и создание на их основе алгоритмов для управления сервоприводами.

Форма контроля Практическое задание.

3.5. Создание управляющей программы. Работа камеры технического зрения(2 часа/2 занятия)

Теория. Освоение ПО TrackingCamApp для работы с камерой технического зрения.

Практическая работа Наладка камеры технического зрения.

Форма контроля Практическое задание.

3.6. Создание управляющей программы для сопряжения камеры технического зрения и манипулятора. (2 часа/2 занятия)

Практическая работа Реализация алгоритма сортировки и реагирования на нужный по программе предмет.

Форма контроля Практическое задание.

3.7. Создание управляющей программы движения манипулятора. (2 часа/2 занятия)

Теория. Понятие цикла манипулятора, как организовать поэтапное движение. Практическая работа Реализация алгоритма движения манипулятора. Форма контроля Практическое задание.

3.8. Отладка написанной программы и доработка. (2 часа/2 занятия)

Практическая работа Тестирование программы с использованием объектов различной формы и цвета. Тестирование динамики движения руки манипулятора при задании различных скоростей работы сервоприводов. Форма контроля Практическое задание.

3.9. Подготовка к публичному выступлению для защиты результатов. Демонстрация результатов работы. (1 час/1 занятие)

Практическая работа. Подготовка презентации для защиты. Подготовка речи для защиты. Презентация созданной программы.

Форма контроля тестирование.

II. Комплекс организационно-педагогических условий.

2.1. Календарный учебный график

Место проведения: МБОО Русскоюрткульская СШ

им.А.И.Новикова

Время проведения занятий: 15:00-16:40

Количество учебных недель: 34 Изменения расписания занятий:

Nº	№ п/п	Тема занятий	Кол-во часов	Форма занятия	Форма контроля	Дата планируемая (число, месяц)	Дата фактическая (число, месяц)	Причина изменения даты
1		Вводные основы конструирования	4					
	1.1	Вводное занятие. Техника безопасности.	1	теория	Входное тестирование			
	1.2	Знакомство с технической деятельностью человека. Информатика, кибернетика, робототехника.	1	теория	Устный опрос			
	1.3.	Понятие робототехники, как науки, история ее развития.	1	теория	Устный опрос			
	1.4.	Смотр презентаций учащихся на тему робототехники.	1	практика	Самостоятельная работа			
2		Изучение состава конструктора КЛИК	13					

	2.1	Изучение принципов построения гоночных машин с использованием электрических машин.	2	Практика	Практическое задание		
	2.2	Составление принципиальной схемы.	2	Практика	Практическое задание		
	2.3	Сборка каркаса робота. Закрепление основных деталей.	2	Практика	Практическое задание		
	2.4	Создание управляющей программы. Настройка драйвера управления двигателями. Работа с энкодером.	2	Практика	Практическое задание		
	2.5	Синтез алгоритма прохождения препятствий.	2	Практика	Практическое задание		
	2.6	Отладка написанной программы идоработка.	2	Практика	Практическое задание		
	2.7	Подготовка к публичному выступлению для защиты результатов. Демонстрация результатов работы	1	Практика	Тестирование		
3		Робот-манипулятор	17				
	3.1	Изучение принципов построения современных манипуляторов. Формирование программы работ.	2	Практика	Практическое задание		

3.2	Составление принципиальной схемы	2	Практика	Практическое задание		
3.3	Сборка каркаса робота. Закрепление основных деталей.	2	Практика	Практическое задание		
3.4	Создание управляющей программы. Изучение работы сервоприводов.	2	Практика	Практическое задание		
3.5	Создание управляющей программы. Освоение ПО TrackingCamApp для работы с камерой технического зрения. Наладка камеры технического зрения.	2	Практика	Практическое задание		
3.6	Создание управляющей программы. Создание программного кода для Сопряжения камеры технического зрения и манипулятора.	2	Практика	Практическое задание		
3.7	Создание управляющей программы движения манипулятора.	2	Практика	Практическое задание		
3.8	Отладка написанной программы и доработка.	2	Практика	Практическое задание		

3.9	Подготовка к	1	Практика	Тестирование		
	публичному					
	выступлению для					
	защиты результатов.					
	Демонстрация					
	результатов работы					

2.2. Условия реализации программы.

Успешность реализации программы в значительной степени зависит от уровня квалификации преподавательского состава и материально-технического обеспечения.

Рекомендованные требования к педагогическому составу:

- Среднее профессиональное педагогическое с техническим уклоном (техническое) или высшее педагогическое (техническое) образование по направлениям (информатика, математика, физика, администрирование информационных систем, компьютерная безопасность, радиоэлектроника).
- Опыт работы с робототехническими платформами СТЕМ Мастерская
- Навыки преподавания в режиме проектной деятельности.

Материально – техническое обеспечение:

- Помещение соответствующее СанПин, с высотой потолка не менее 2,5 м.;
- рабочие столы, стулья;
- шкафы стеллажи для разрабатываемых и готовых прототипов проекта;
- ноутбуки с операционной системой Astra Linux;
- Доступ в интернет;
- Мультимедиа-проектор;
- Образовательный робототехнический комплект " СТЕАМ мастерская".
- Робототехнический образовательный набор "КЛИК"

Для электронного обучения и обучения с применением дистанционных образовательных технологий используются технические средства, а также информационно-телекоммуникационные сети, обеспечивающие передачу по линиям связи указанной информации (образовательные онлайн-платформы, цифровые образовательные ресурсы, размещенные на образовательных сайтах, видеоконференции, вебинары, zoom — общение, e-mail, облачные сервисы и т.д.)

Состав группы:

Группа обучающихся состоит из **7 человек**. Данное количество обусловлено спецификой образовательного процесса.

К работе в объединении дети приступают после проведения руководителями соответствующего инструктажа по правилам техники безопасной работы с инструментом, приспособлениями и используемым оборудованием.

Критерии оценки результативности обучения:

теоретической подготовки обучающихся: соответствие уровня теоретических знаний программным требованиям; широта кругозора; свобода восприятия теоретической информации; развитость практических литературой, работы специальной навыков co осмысленность и свобода использования специальной терминологии;

- практической подготовки обучающихся: соответствия уровня развития практических умений и навыков программным требованиям; свобода владения специальным оснащением; качество выполнения практического задания; технологичность практической деятельности;
- развития обучающихся: культура организации практической деятельности; культура поведения; творческое отношение к выполнению практического задания; аккуратность и ответственность при работе;
- качество реализации и уровень проработанности проекта реализуемый обучающимися (в соответствии с возрастными особенностями).

2.3. Формы аттестации и оценочные материалы

Для отслеживания результативности образовательной деятельности по программе проводятся: входной, текущий, промежуточный и итоговый контроль.

Входной контроль- оценка стартового уровня образовательных возможностей учащихся при поступлении в объединение, ранее не занимающихся по данной дополнительной общеобразовательной общеразвивающей программе. Проводится в сентябре.

Во время проведения входной диагностики педагог заполняет Информационную карту «Определение уровня знаний и умений учащихся», пользуясь следующей шкалой:

Оценка параметров		Уровень по сумме баллов		
начальный	1 балл	5-9	начальный	
уровень		баллов	уровень	
средний уровень	2 балла	10-14 баллов	средний уровень	
высокий	3 балла	15-18	высокий	
уровень		баллов	уровень	

Текущий контроль - оценка уровня и качества освоения тем/разделов программы и личностных качеств учащихся; осуществляется на занятиях в течение всего учебного года. Промежуточный контроль - оценка уровня и качества освоения учащимися дополнительной общеобразовательной общеразвивающей программы по итогам изучения раздела, темы или в конце определенного периода обучения/учебного года (при сроке реализации программы более одного года). Итоговый контроль - оценка уровня и качества освоения учащимися дополнительной общеобразовательной общеразвивающей программы по завершению учебного года или всего периода обучения по

программе. Диагностика уровня личностного развития учащихся проводится по следующим параметрам: культура речи, умение слушать, умение выделить главное, умение планировать, умение ставить задачи, самоконтроль, воля, выдержка, самооценка, мотивация, социальная адаптация.

Формы аттестации

Входная диагностика – педагогическое наблюдение, опрос, позволяющие выявить уровень подготовленности и возможности детей для занятия данным видом деятельности.

Текущий контроль — опрос на основе полученных знаний на текущий момент времени, выполнение кейс- заданий, анализ сконструированных технических моделей. Заканчивается коррекцией усвоенного материала.

Промежуточный контроль – проверка знаний, умений и навыков при помощи разработанных кейсов. Итоговая аттестация – участие в соревнованиях.

2.4 Методические материалы

Интернет-ресурсы:

- 1. Правиласоревнований: http://robolymp.ru/season-2019/training/resources/
- 2. Информационнометодическиематериалы: https://infourok.ru/uchebnometodicheskie-materiali-robototehnika-dlya-mindstorms-education-ev-2376203.html
- 3. Методикаформированиядетскогоколлектива: https://infourok.ru/formirovanie-detskogo-kollektiva-mladshih-shkolnikov-2237855.html
- 4. Методика преподавания робототехники:www.239.ru/userfiles/file/Program_methodology_239.doc

2.5.Список литературы

для детей и родителей

- 1. Денис Копосов. Первый шаг в робототехнику. Практикум для 5-6 классов. М. Бином. Лаборатория знаний. 2012. 292 с. Босова Л.Л., Босова А.Ю., Коломенская Ю.Г. Занимательные задачи по информатике.
- 2. М.: БИНОМ. Лаборатория знаний. 2007.
- 3. УллиСоммер. Программирование микроконтроллерных плат Arduino/Freeduino. СПб. БХВ-Петербург. 2017. 256 с.
- 4. Ревич Юрий. Занимательная электроника— СПб. БХВ-Петербург. 2015. 156 с
- 5. Виктор Петин. Проекты с использованием контроллера Arduino, 2-е издание. СПб. БХВ-Петербург. 2015. 464 с.

для педагога

- 6. Пол Р. Моделирование, планирование траекторий и управление движением робота-манипулятора. М.: Наука, 1996. 103 с.
- 7. Шахинпур М. Курс робототехники. М.: Мир, 1990.-527 с. -ISBN 5-03-001375-X.
- 8. Избачков С.Ю., Петров В.Н. Информационные системы–СПб.: Питер, 2008. 655 с
- 9. Елисеев Д. Цифровая электроника https://cloud.mail.ru/public/F6Vf/nY6iSxXcd
- 10. Филиппов С.А. Робототехника для детей и родителей. СПб.: Наука, 2011. 263 с.
- 11. Лукас В.А. Теория автоматического управления: Учеб. пособие для вузов. -2-е изд., перераб. и доп. –М.: Недра, 1990. -416 с.
- 12.Первозванский А. А. Курс теории автоматического управления: Учебное пособие для вузов. М.: Наука, 1986. 616 с.